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Abstract

The formulation and implementation of an
optimization method called Simultaneous
Aerodynamic Analysis and Design Optimization
(SAADO) is presented and applied to a simple 3D
wing problem. The method aims to reduce the
computational expense incurred in performing shape
optimization using state-of-the-art CFD flow analysis
and sensitivity analysis tools. Results for this small
problem show that the method reaches the same local
optimum as conventional optimization methods and
does so in about half the computational time.

Nomenclature

b wing semispan
CD drag coefficient
Cl rolling moment coefficient
CL lift coefficient
CM pitching moment coefficient
Cp pressure coefficient
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cr wing root chord

ct wing tip chord
F objective function
g constraints

M∞ free-stream Mach number
Q flow field variables (state variables) at each

CFD mesh point
∆Q1 change in flow solver field variables due to

better convergence

∆Q2 change in flow solver field variables due to
design changes

R residual field of the state equations at each
CFD mesh point

|R/R0| norm of the residual normalized by its initial
value

S semispan wing planform area
T twist angle at wing tip, positive for leading

edge up
X CFD volume mesh
XLE vector location of wing root leading edge
x/c chordwise location normalized by local wing

section chord

xt longitudinal location of wing tip trailing edge

zr root section camber
α free-stream angle-of-attack
β design variables
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∆ operator which indicates a change in a
variable 

δ size of fictitious side bound on design
variables

γ line search parameter
superscripts:
* designates updated value
′ gradient with respect to design variables

Introduction

Simultaneous Aerodynamic Analysis and Design
Optimization (SAADO) is a procedure which incorporates
design improvement within the iteratively solved
(nonlinear) aerodynamic analysis so as to achieve fully
converged flow solutions only near an optimal design.
Overall computational efficiency is achieved because the
many expensive iterative (nonlinear) solutions for non-
optimal design parameters are not converged (i.e.,
obtained) at each optimization step.  One obtains the design
in the equivalent of a few (rather than many) multiples of
the computational time for a single, fully converged flow
analysis. SAADO and similar procedures for simultaneous
analysis and design (SAND) developed by others are noted
and discussed by Newman et al.1 These SAND procedures
appear to be best suited for applications where the
discipline analyses involved in the design are nonlinear and
solved iteratively.  Generally, convergence of these
discipline analyses (i.e., state equations) is viewed as an
equality constraint in an optimization problem. From this
latter point of view, the SAADO method proceeds through
infeasible regions of the (β, Q) design space. A further
advantage of SAADO is the efficient utilization of existing
discipline analysis codes (without internal changes),
augmented with sensitivity or gradient information, and yet
effectively coupled more tightly than is done in
conventional gradient-based optimization procedures,
referred to as nested analysis and design  (NAND)
procedures.1 A recent overview of aerodynamic shape
optimization2 discusses both NAND and SAND procedures
in the context of current steady aerodynamic optimization
research.

For single-discipline design problems, the distinction
between NAND and SAND procedures is fairly clear
and readily seen. With respect to discipline feasibility
(i.e., convergence of the iteratively (generally
nonlinear) solved state equations), these procedures
can be viewed as accomplishing design by using only
very well converged discipline solutions (NAND) or
as converging a sequence of discipline solutions from
poorly to well as the design progresses (SAND).
However, the problem formulation and solution

algorithms may differ considerably. About twenty
SAND references are quoted by Newman et al.1 and
Newman et al.2; these references discuss a variety of
formulations, algorithms, and results for single-
discipline problems (mostly CFD applications) in the
sense of SAND defined above. For multidisciplinary
design optimization problems, the distinction between
NAND and SAND is somewhat blurred because there
are feasibility considerations with respect to all the
individual discipline state equations as well as with
respect to the multidisciplinary system compatibility
and constraints. A number of the papers in Ref. 3
discuss MDO formulations and algorithms that are
called SAND-like. However, not all of these latter
MDO procedures appear to agree with the sense of
SAND defined above and used herein; one that does
is Ref.4.

The computational feasibility of SAADO for quasi 1-D
nozzle shape design based on the Euler equation CFD
approximation was demonstrated by Hou et al.5 and
Mani.6 Application of SAADO for turbulent transonic
airfoil shape design based on a 2-D thin-layer Navier-
Stokes CFD approximation was demonstrated and
reported in a later paper by Hou et al.7 Both of these
application results are summarized and briefly discussed
in Ref. 1. These SAADO procedures utilized quasi-
analytical sensitivity derivatives which were obtained
from hand-differentiated code for the initial quasi 1-D
application5, 6 and from automatically differentiated code
for both the 2-D airfoil application7 and the present 3-D
wing application.  Different optimization techniques
have also been used in these SAADO procedures. Our
initial 3-D wing results from SAADO, obtained with
several optimization techniques, are given in this paper.
The problem was a simple wing planform design where
changes in design variables were sought to produce
improvement in the lift-to-drag ratio subject to lift,
pitching moment, and rolling moment (i.e., solution
dependent) constraints, as well as geometric constraints.
Our ultimate goal is simultaneous aerodynamic and
structural wing design.

Problem Description

To evaluate the efficacy of this SAADO procedure in
3-D, it is applied herein to a simple rigid wing alone.
The wing consisted of a trapezoidal planform with a
rounded tip. It was parameterized by fifteen variables;
five described the planform, and five each described
the root and tip section shapes. A schematic of the
wing and its associated planform parameters is shown
in Fig. 1. The baseline wing section varied linearly
from an NACA 0012 at the root to an NACA 0008 at
the tip. The specific parameters selected as design
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variables in the sample optimization problems are
identified in the section entitled Results. The
objective function to be minimized was the negative
of the lift-to-drag ratio, –L/D. In lieu of additional
discipline interactions, both aerodynamic and
geometric constraints were imposed.

The aerodynamic constraints were:

− lower limit on lift, CL * S, in lieu of a minimum
payload requirement

− upper limit on rolling moment, Cl, in lieu of a
maximum bending moment

− upper limit on pitching moment, CM, in lieu of a
trim constraint

The purely geometric constraints were:

− minimum leading edge radius,  in lieu of a
manufacturing requirement

− minimum wing section thickness,  in lieu of a
structural interaction

− side constraints (bounds) on the active design
variables

SAADO Procedure

The SAADO approach formulates the design-
optimization problem as follows:

min , ( ), )
,β

β β
Q

F(Q X (1)

subject to

g Q X mi ( , ( ), ) ; , , ... ,β β ≤ =0 1 2       i (2)

and

R Q X( , ( ), )β β = 0 . (3)

Recall that Q, R, and X are very large vectors. This
formulation treats the state variables, Q, as part of the
set of independent design variables, and considers the
state equations to be constraints. Because satisfaction
of the equality constraints of Eq. (3) is required only
at the final optimum solution, the steady-state
aerodynamic field equations are not converged at
every design-optimization iteration. The easing of
that restriction can significantly reduce the
excessively large computational cost incurred in the
conventional approach.  However, this advantage
would likely be offset by the very large increase in
the number of design variables and equality constraint
functions, unless some remedial procedure is adopted.

The SAADO method begins with a linearized design-
optimization problem which is solved for the most
favorable change in the design variables, ∆β, as well
as for the changes in the state variables, ∆Q; that is,
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where Eqs. (4), (5) and (6) are linearized
approximations of Eqs. (1), (2) and (3), respectively.
In this formulation, the residual of the non-linear
aerodynamic field equations, R(Q,X,β), is not
required to be zero (reach target) until the final
optimum design is achieved. The linearized problem
of Eqs. (4), (5), and (6) is difficult to solve directly
because of the number of design variables and
equality constraint equations. This difficulty is
overcome for the direct differentiation method by
using direct substitution to remove ∆Q and Eq. (6)
altogether from this linearized problem. The discrete
adjoint method described in the Appendix is another
way to overcome the difficulty. However, the
remainder of this paper describes only the use of the
direct differentiation method for formulating the
SAADO procedure and its application to optimization
problems.

Equation (6) provides a linear relation to represent
∆Q in terms of ∆β as

∆ ∆ ∆ ∆βQ Q Q= +1 2 (7)

where vector ∆Q1 and matrix ∆Q2 are solutions of the
following equations

∂
∂

R

Q
Q R∆ 1 = − (8)
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Note that the number of columns of matrix ∆Q2 is
equal to the number of design variables, β. A new
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linearized problem with ∆β as the only design
variables can be obtained by substituting Eq (7) into
Eqs. (4) and (5) for ∆Q:
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Once established, this linearized problem can be
solved using any mathematical programming
technique for design changes, ∆β. The associated
changes in ∆Q can be calculated using Eq (6) or
equivalently, Eqs. (7), (8), and (9). A one-
dimensional search on the step size parameter γ is
then performed in order to find the updated values,
β*=β+γ∆β, the new mesh, X*=X(β∗), and Q*=Q+∆Q*

where the search procedure must solve a nonlinear
optimization problem of the form

min , , )* * *

γ
βF(Q X (12)

subject to

g Q X mi ( , , ) ; , , ... ,* * *β ≤ =0 1 2       i (13)

and

R Q X( , , )* * *β = 0 (14)

The step size γ is the only design variable. Again it is
noted for emphasis that the equality constraints, Eq.
(14), are not required to be zero (reach target) until
the final optimum design; violations of these equality
constraints should simply be progressively reduced
during the SAADO procedure.  Therefore, the

updated Q* in this study is defined as Q
*
=Q+∆Q

*,
which satisfies the first order approximations Eq. (14)
as
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Equation (15) may be solved using Eqs (8) and (9),

which give the updated Q
*
as Q

*
=Q+∆Q1+γ∆Q2∆β.

Therefore, the update of Q includes two parts: ∆Q1

and ∆Q2. The former is due to better convergence of
the flow solver, whereas the latter is due to changes in
the design variables. In fact, ∆Q2 approaches the flow
field sensitivities, Q′, as the solution becomes better

converged. The appearance of ∆Q1 in the formulation
makes the SAADO approach different from the
conventional NAND aerodynamic optimization
method.  The ∆Q1 not only constitutes a change in Q
but also plays an important role in defining the
constraint violation of Eq. (11). Since ∆Q1, as shown
in Eq. (8), represents a single Newton’s iteration on
the flow equations, it is possible to approximate it as
the change in Q as a result of several Newton’s
iterations to improve the quality of the flow solution.
A schematic of the present SAADO procedure is
shown in Fig. 2.

Computational Tools and Models

The aerodynamic flow analysis code used for this
study is a version of the CFL3D code8. Only Euler
analyses are performed for this work, although the
code is capable of solving the Navier-Stokes
equations with any of several turbulence models. The
derivative version of this code, which was used for
aerodynamic sensitivity analysis, was generated by an
unconventional application9 of the automatic
differentiation code ADIFOR10, 11 to produce a
relatively efficient, direct mode, gradient analysis
code, CFL3D.ADII.12 It should be pointed out that the
ADIFOR process produces a discretized derivative
code that is consistent with the discretized function
analysis code. The addition of a stopping criterion
based on the norm of the residual of the field
equations was the only modification of the
CFL3D.ADII code made to accommodate the
SAADO procedure.

The surface geometry was generated based on the
parameters described in the previous section by a
code utilizing the Rapid Aircraft Parameterization
Input Design (RAPID) technique developed by Smith,
et al.13 This code was preprocessed with ADIFOR to
generate a code capable of producing sensitivity
derivatives as well.

The CFD volume mesh needed by the flow analysis
code was generated using a version of the CSCMDO14

grid generation code. The associated grid sensitivity
derivatives needed by the flow sensitivity analysis
were generated with an automatically differentiated
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version of CSCMDO.15 In addition to the
parameterized surface mesh and accompanying
gradients, CSCMDO requires a baseline volume mesh
of similar shape and identical topology. The 40,000
grid point baseline volume mesh of C-O topology
used in the present examples was obtained with the
WTCO code.16 This mesh is admittedly particularly
coarse by current CFD analysis standards.

Several optimization techniques were used in this
study. Both conventional and SAADO procedures
were implemented, run, and compared. The
Sequential Quadratic Programming method and the
Method of Feasible Directions as implemented in the
DOT17 optimization software were used and the
results were designated SQP and MFD, respectively,
when run in the conventional (NAND) mode. The
same optimization methods were also used in a
SAADO or SAND mode (that is, partially converged
CFD analysis and sensitivity results at each iteration)
and these results were designated SSQP and SMFD.
In addition, a rather inefficient, unsophisticated
optimization technique was devised for use in the
SAADO mode in order to provide dynamic direct
access to and control of parameters typically
internally controlled by packaged optimizers. This
technique is a sequential linear method consisting of

− formulation of a merit function as weighted sum
of objective function and active constraints

− determination of the step direction by steepest
descent of the merit function

− determination of the step size using a one-
dimensional line search

Results are designated SDMF when obtained in the
conventional mode and SSDMF when obtained in the
SAADO mode.

All procedures were executed with an SGI
OCTANE™ workstation with a 250Mhz R10000™
processor. The 785MB RAM was sufficient for the
largest code, CFL3D.ADII, to fit in core for the
40,000-point mesh and number of design variables
considered herein.

Results

Most of the results shown in this work are for a
design problem involving only two design variables
out of the fifteen available wing parameters.
Preliminary results for a five-design-variable problem
are briefly discussed in the subsequent subsection. In
the last subsection, these present SAADO results are
discussed in the context of other SAND approaches.

Two-Design-Variable Problems

Many of the benefits and many of the problems
associated with SAADO are demonstrated with just
two design variables. A benefit of studying just two
design variables is the facility to visualize the
optimization process. In the course of another
approximation and optimization study18, databases of
computational results were created for each of several
grids for the present objective function as a function
of ct and xt with the same CFD code, wing, and flow
conditions as used herein. One of those grids was
identical to that used in this study. The results in this
database were converged to |R/R0| = 10-6. Thus,
contour plots of the present objective function are
available; on such plots, we can show the paths taken
through design space by the several optimization
techniques.

Subsonic Problem-The flow conditions for the

subsonic flow case were M∞ = 0.5 and α = 3°. Figure
3a shows the objective function contour plot for this
case; the two SAADO mode results are those labeled
SSDMF and SSQP whereas the conventional mode
result is that labeled SQP. The rolling moment
constraint boundary with its corresponding infeasible
region appears on this plot; however, the other
constraints are feasible throughout the domain shown.
This (ct-xt) domain consists of that region bounded by
the design variable side constraints. All three
optimization results lie very close to the minimum.

Figure 3b shows the different paths taken by these
three optimization techniques. Because none of these
optimization paths approach the constraint boundary,
none of the constraints are active for these subsonic
case results. All of these paths start at (1,1) in the (ct,
xt) design space. The domain has been truncated for
these plots. The paths taken by the SQP and SSQP
methods appear to be much more efficient in terms of
the total number of calls to the analysis code. Even
with analysis and gradients not as well converged, the
step direction and size determined by the SSQP are
quite similar to those of the SQP method. The
SSDMF method takes smaller steps on a distinctly
more circuitous path. This circuitous path is partially
due to less effective use of past iteration results and
also due to a somewhat simplistic method of
determining the step size and direction. Definitive
computational time comparisons for these subsonic
cases are not available due to omissions in the code
instrumentation. The results are presented to show
that for two optimization techniques, the SAADO
(SAND) method finds the same optimum as the
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conventional (NAND) method. Further, these results
suggest that a more sophisticated optimization
procedure could substantially improve the SSDMF
result, while greater user control of the step size,
particularly early in the procedure, could further
decrease the computational cost for the SSQP result.

Figure 4 shows the wing planform and the surface
pressure coefficient results for the subsonic cases.
The three “optimized” planform shapes are very
similar and can be seen to result in essentially the
same chordwise pressure distributions. Furthermore,
all of these distributions differ little from the original,
even where the local chords differ, away from the
wing root.

Supercritical Problem- Most of the experimentation
with SAADO was conducted for a problem which is
more interesting both from the point of view of the
aerodynamic analysis and of the optimization
problem. The flow conditions for the supercritical

flow case were M∞ = 0.8 and α = 1°. A shock was
present over a substantial spanwise portion of the
wing and there were active constraints. Figure 5a
shows the objective function contour plot for the two
design variable problem. The shaded region denotes
the infeasible region of the lift constraint. The other
constraints were not active. The final iterates for eight
optimization technique results are shown to lie near
the optimal point of the feasible region. These eight
techniques consist of three conventional NAND
optimizations (SQP, MFD and SDMF) and their
corresponding SAND modes (SSQP, SMFD and
SSDMF) as discussed in a previous section, as well as
two modifications to the SSQP, denoted as SSQP,
δ=0.10 and SSQP, δ=0.15. The parameter δ simply
provides a means to limit the change in design
variables at each optimization step by dynamically
adjusting the side constraints. Further discussion
concerning results from these latter two techniques
appears in the subsequent subsection.

Figure 5b shows the different paths taken by these
eight optimization techniques. All of these
optimization paths approach and cross the lift
constraint boundary. Thus, this constraint was active
and, at times, violated in all of the techniques for this
supercritical problem. As in the subsonic problem, all
of these paths start at (1,1) in the (ct, xt) design space,
and the domain has been truncated for these plots.
Here too, the less-converged analysis and gradient
data used by the SSQP method do not seem to impair
its ability to determine the step direction and size.
Again, the results are similar to those of the

conventional SQP method. The simplistic SDMF and
SSDMF methods still take smaller steps on less direct
paths, and once more, these circuitous paths are due
to ineffective use of information from past
optimization iteration results and a simplistic means
of determining the step size and direction. The step
size for the SDMF decreased substantially when the
constraint was encountered. The SDMF required a
few more optimization steps than the SSDMF to
reach the minimum. As expected, the MFD spends
less time in the infeasible region than the other
optimization techniques.  However, the SMFD does
not appear to track the MFD optimization path very
well.

Figure 6 shows the wing planform and the surface
pressure coefficient results for the supercritical cases.
Since all of the “optimized” planform shapes are
essentially the same and result in the same chordwise
pressure distribution, results from only three
optimization techniques are shown. The shock wave
on the original wing has been weakened substantially
in the optimized cases, as would be expected.

Computation Cost Comparisons- In view of the
consistency of the NAND and SAND optimization
results, the measure of success or failure of the
SAADO procedure is then its relative computational
expense. Figure 7 shows the relative cost, based on
accumulated CPU time, for the procedures using the
various methods. The cost of the geometry generator,
mesh generator and optimization driver are not
included because their contributions are minimal
relative to the cost of the flow solver and flow
sensitivity solver. The cost shown is for flow analyses
and gradient analyses and is normalized by the cost of
one full analysis to the target residual. The SAADO
method primarily reduces the cost of the flow
analysis. In this regard, the SAADO method does
show improvement over its conventional counterpart
for all methods.

The SAADO method appears to make the most
overall improvement for the Method of Feasible
Directions (MFD vs. SMFD) and the Steepest
Descent Method with the Merit Function (SDMF vs.
SSDMF). The least relative reduction is shown for the
Sequential Quadratic Programming method (SQP vs.
SSQP). Note that for the conventional methods, the
MFD is dominated by flow analysis whereas the
SDMF is dominated by sensitivity analysis; the SQP
is relatively balanced. On the computer platform used
in this study, the ADIFOR-generated gradient
analysis is relatively inefficient compared to the flow
analysis.
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For the SAND methods, the smaller steps taken in the
SSDMF path relative to those in the SSQP path, result
in smaller perturbations in the flow and gradient
fields. In addition, for each step in the SSDMF, the
convergence level for the subsequent step is not as
stringent as that required in the SSQP. Compared to
the number of flow solver iterations required at each
design step in SSQP and conventional SQP, relatively
few are required in the SSDMF. However, this
savings is traded off with the relatively large number
of design steps required for SSDMF. Some
combination of the two methods, such that small steps
are taken along a more direct path, may lead to
improved efficiency. That improved efficiency was
the idea behind the two SSQP methods labeled δ= 0.1
and δ=0.15. The side constraints were adjusted at
each call to DOT so as to limit the step size.
However, an overall detrimental effect on the method
resulted, since each time this fictitious side constraint
was encountered, DOT called for recalculation of the
gradients.

The most computational cost for any of these methods,
other than MFD and SMFD, is spent computing
gradients, even though none of the gradient residual
ratios were converged below three orders of magnitude.
Early in the respective processes, the gradients for
SSDMF in particular and also the DOT methods were
not well converged. As the number of design variables is
increased, this proportion will grow nearly linearly. The
need for faster gradient calculations is apparent. Hou et
al.1 estimated a considerable speed-up attributed to using
hand-differentiated adjoint code for the 2-D Euler
equations. Fortunately, automatic code generation tools
for more easily and efficiently computing gradients using
adjoint methods19 are on the horizon.

Five-Design-Variable Problem

Limited preliminary results are given and briefly
discussed in this section for the same wing shape
optimization problem but with five design variables.
These five design variables are root camber (zr), tip

chord (ct), tip setback (xt), wing semispan (b), and tip
twist (T). Table 1 presents a comparison of the
conventional SQP (NAND) and SSQP (SAND)
results. It can be seen from the objective function and
final design variable values that these two procedures
did not arrive at exactly the same place in design
space. However, both had the same two active
constraints (rolling moment and pitching moment)
and active side constraints (wing semispan and tip
setback). The reduction in relative optimization cost,
based on CPU time, for SAADO is comparable to

that obtained in the two design variable cases and the
total optimization cost scales with the number of
design variables as it should for gradients obtained
via direct differentiation.

Further Discussion

The relative cost, based on CPU timing ratios, for the
SAADO (SAND) versus conventional (NAND)
procedures applied to these present small 3-D
aerodynamic shape design optimization problems
range from about one-half to seven-tenths. This range
is very similar to that reported for 2-D nonlinear
aerodynamic shape design optimization in Refs. 1 and
4, even though many of the computational details
differ.  The results given in Ref. 1 were for a
turbulent transonic flow with shock waves computed
using a Navier-Stokes code; a direct differentiation
approach (using ADIFOR) was used for the
sensitivity analysis.  The results reported in Ref. 4
were for a compressible flow without shock waves
computed using a nonlinear potential flow code; an
adjoint approach was used for the sensitivity analysis.
Since these two optimization problems were also not
the same, then, no timing comparison between these
adjoint and direct differentiation solution approaches
would be meaningful.  As indicated earlier, an
expected speed-up for using an adjoint, instead of the
direct differentiation, approach was estimated in Ref.
1.

Ghattas and Bark20 recently reported 2-D and 3-D
results for optimal control of steady incompressible
Navier-Stokes flow which demonstrate an order-of-
magnitude reduction of CPU time for a SAND
approach versus a NAND approach. These results
were obtained using reduced Hessian SQP methods
that avoid converging the flow equations at each
optimization iteration. The relationship of these
methods with respect to other optimization techniques
is also discussed in Ref. 20.

Several other SAND-like methods for simultaneous
analysis and design are summarized and discussed by
Ta’asan 21.  These methods are called "One-Shot" and
"Pseudo-Time" and have been applied to
aerodynamic shape design problems at several
fidelities of CFD approximation, as noted in Ref. 21.
These techniques have obtained an aerodynamic
design in the equivalent of several analysis CPU
times for some sample problems.
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Concluding Remarks

This study has introduced an implementation of the
SAADO technique for a simple 3-D wing. Initial
results indicate that SAADO

1. finds the same local minimum as a conventional
technique for the two-design-variable cases and a
similar local minimum for a preliminary five-
design-variable case

2. is computationally more efficient than a
conventional gradient-based optimization
technique

3. requires few modifications to the analysis and
sensitivity analysis codes involved.

Initial results have illustrated the need for an adjoint
method for efficiently computing the sensitivity
derivatives. Fortunately, such automated adjoint code
generation tools are on the brink of being readily
available. The SAADO method of closely coupling
the analysis and optimizer iteration loops requires
optimization software that does not usurp all control.
That is, the SAADO technique needs to have some
control over certain parameters during the
optimization process; these parameters are typically
considered ‘optimizer’ parameters and are only set by
the user initially.
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 Appendix - SAADO Procedure Using a Discrete
Adjoint Approach

The SAADO approach formulates the design-
optimization problem as follows:

min , ( ), )
,β

β β
Q

F(Q X (A1)

subject to

g Q X mi ( , ( ), ) ; , , ... ,β β ≤ =0 1 2       i (A2)

and

R Q X( , ( ), )β β = 0 . (A3)

Recall that Q, R, and X are very large vectors. This
formulation treats the state variables, Q, as part of the
set of independent design variables, and considers the
state equations to be constraints. Because satisfaction
of the equality constraints of Eq. (A3) is required only
at the final optimum solution, the steady-state
aerodynamic field equations are not converged at
every design-optimization iteration. The easing of
that restriction can significantly reduce the
excessively large computational cost incurred in the
conventional approach.  However, this advantage
would likely be offset by the very large increase in
the number of design variables and equality constraint
functions, unless some remedial procedure is adopted.

The SAADO method begins with a linearized design-
optimization problem which is solved for the most
favorable change in the design variables, ∆β, as well
as for the changes in the state variables, ∆Q; that is,

β∆





∂β
∂+′

∂
∂+

∆
∂
∂+β

∆β∆

F
X

X

F

Q
Q

F
),X,Q(Fmin

Q,
(A4)

subject to

m,...,2,1i       ;0
g

X
X

g

Q
Q

g
),X,Q(g

ii

i
i

=≤β∆





∂β
∂

+′
∂
∂

+

∆
∂
∂

+β
(A5)

and

0
R

X
X

R

Q
Q

R
),X,Q(R

=β∆





∂β
∂+′

∂
∂+

∆
∂
∂+β

(A6)

where Eqs. (A4), (A5) and (A6) are linearized
approximations of Eqs. (A1), (A2) and (A3),
respectively. In this formulation, the residual of the
non-linear aerodynamic field equations, R(Q,X,β), is
not required to be zero (reach target) until the final
optimum design is achieved. The linearized problem
of Eqs. (A4), (A5), and (A6) is difficult to solve
directly because of the number of design variables
and equality constraint equations. This difficulty is
overcome for the adjoint method by the introduction
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of  the adjoint vectors, λ0 and λi which are solutions
of the following adjoint equations

Q

F

Q

R
0

T

∂
∂−=λ





∂
∂

(A7)

...m 2, 1,i   ;
Q

g

Q

R i
i

T

=
∂
∂

−=λ





∂
∂

. (A8)

The linearized problem of Eqs. (A4) to (A6) can then
be formulated as

β∆
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∂β
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subject to

m,...,2,1i       

;0
Rg
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i

iT
i
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T
ii

=

≤β∆
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∂λ+
∂β
∂

+′





∂
∂λ+

∂
∂

+

λ+β

(A10)

Once established, this linearized problem can be
solved using any mathematical programming
technique for design changes, ∆β. A one-dimensional
search is then performed for the step size parameter γ
in order to find the updated values, β*

=β+γ∆β,

X*=X(β∗), and Q
* 
where the search procedure must

solve a nonlinear optimization problem of the form

min , , )* * *

γ
βF(Q X (A11)

subject to

g Q X mi ( , , ) ; , , ... ,* * *β ≤ =0 1 2       i (A12)

and

R Q X( , , )* * *β = 0 . (A13)

The step size, γ, is the only design variable. Again it
is noted for emphasis that the equality constraints, Eq.
(A13), are not required to be zero (reach target) until
the final optimum design; violations of these equality
constraints should simply be progressively reduced
during the SAADO procedure.  Therefore, the

updated Q* in this study is defined as Q
*
=Q+∆Q

*,
which satisfies the first order approximations Eq.
(A13) as

( ) 0
R

X
X

R

Q
Q

R
),X,Q(R *

=β∆γ





∂β
∂+′

∂
∂+

∆
∂
∂+β

(A14)

The update for Q
*
 need not be determined from Eq.

(A14), but rather can be taken from the results of
solving Eq. (A13) in the process of determining γ.

The SAADO procedure presented here is similar to
that procedure which Ghattas and Bark20 call Quasi-
Newton Sequential Quadratic Programming.
However, that procedure as presented did not provide
for state variable dependent constraints and it was
directly embedded in a particular mathematical
programming technique, SQP.

Number of active 
bounds

Objective function

Number of active 
constraints

ct

zr, %chord

b

T, deg.

Relative function 
analysis cost

Relative gradient 
analysis cost

Relative 
optimization cost
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2 2

2 2
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Table 1. Comparison of Preliminary SQP and SSQP Results for 
the Five−Design−Variable Problem
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Fig. 5b Map of well−converged objective function and constraint boundary with optimization paths, 
M∞=0.8, α=1˚.

-2.7
-2.66

-2.62

-2.62

-2.58

-2.58

-2.54

-2.54

-2.54

-2.5

-2.5

-2.5

-2.46

-2.46

-2.46

-2.46

-2.42

-2.42

-2.42

-2.42

-2.38

-2.38

-2.38

-2.38

-2.38

-2.34

-2.34

-2.34

-2.34

-2.34

-2.3

-2.3

-2.3

-2.3

-2.26

-2.26

-2.26

-2.22

-2.22

-2.18

-2.18

-2.14

-2.14

-2.1

-2.1

-2.1

-2.06

-2.06

-2.02

-2.02

-1.98

-1.98

-1.94

-1.94

-1.94

-1.9

-1.9

-1.9

-1.86

-1.86

-1.82

-1.82

-1.78

-1.78

-1.74 -1.7 -1.66

ct+0.5

x t

0.7 0.8 0.9 1 1.1 1.2
1

1.5

2

2.5

3 SQP

-2
.5

-2.46

-2
.46

-2.42

-2.38

-2.7
-2.66

-2.62

-2.62

-2.58

-2.58

-2.54

-2.54

-2.5

-2.5

-2.5

-2.46

-2.46
-2.46

-2.42

-2.42

-2.42

-2.42

-2.38

-2.38

-2.38

-2.38

-2.34

-2.34

-2.34

-2.34

-2.3

-2.3

-2.3

-2.3

-2.26

-2.26

-2.26

-2.26

-2.22

-2.22

-2.22

-2.18

-2.18

-2.14

-2.14

-2.14

-2.1

-2.1

-2.06

-2.06

-2.02

-2.02

-1.98

-1.98

-1.98

-1.94

-1.94

-1.9

-1.9

-1.86

-1.86

-1.82

-1.78

-1.78

-1.74

-1.7

-1.66

ct+0.5

x t

0.7 0.8 0.9 1 1.1 1.2
1

1.5

2

2.5

3 SSQP

-2
.5

-2.46

-2
.46

-2.42

-2.38



−1

1

−.5

.5

0

Cp

−1.

−.5

0

.5

1.

Cp

Original
wing

SSDMF 
result

B

B

B

A

Original
SSDMF
SQP
SSQP

Section B−B

Section A−A

Fig. 6. Comparison of original wing and optimization results at M∞= 0.8, α = 1°:  upper surface pressure 
contours, pressure coefficients at two span stations, and planform shapes.

Upper surface pressure contours

Pressure coefficients

B

A

Planform shapes



Figure 7. Computational cost comparisons
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